I.B.2.N.g.2. ACER RUBRUM - NYSSA SYLVATICA SATURATED FOREST ALLIANCE

Red Maple - Blackgum Saurated Forest Alliance

Physiognomic Class Forest (I)

Physiognomic Subclass Deciduous Forest (I.B.)
Physiognomic Group Cold-deciduous forest (I.B.2.)
Physiognomic Subgroup Natural/Semi-natural (I.B.2.N.)

Formation Saturated cold-deciduous forest (I.B.2.N.g.)

Alliance ACER RUBRUM - NYSSA SYLVATICA SATURATED FOREST

ALLIANCE(I.B.2.N.g.2.)

Acer rubrum - Nyssa sylvatica / Rhododendron viscosum - Clethra alnifolia Forest

Red Maple - Blackgum / Swamp Azalea - Coastal Sweet-pepperbush Forest

Lower New England Red Maple - Black Gum Swamp

CLASSIFICATION CONFIDENCE LEVEL: 2

USFS WETLAND SYSTEM: Palustrine

RANGE:

Fire Island National Seashore

This association occurs on the William Floyd Estate in low areas inland from the shore. It also occurs in the Sunken Forest portion of Fire Island.

Globally

Core of distribution is Lower New England / Northern Piedmont and North Atlantic Coast.

ENVIRONMENTAL SETTING:

Fire Island National Seashore

On the Floyd Estate, it occurs adjacent to small creeks in poorly-drained basins with silt loam substrates or adjacent to tidal creeks. On Fire Island it occurs in wet interdunal swales.

Globally

In poorly drained depressions characterized by acidic, tannic water that does not receive substantial nutrient input.

MOST ABUNDANT SPECIES:

Fire Island National Seashore

<u>Stratum</u> <u>Species</u>

Tree canopy Nyssa sylvatica, Acer rubrum

Shrub Vaccinium corymbosum, Rhododendron viscosum

Herbaceous Polygonum hydropiper, Carex crinita, Osmunda innamomea

Vine/Liana Smilax rotundifolia

Globally

Stratum Species

Tree canopy Acer rubrum, Nyssa sylvatica

Shrub Vaccinium corymbosum, Clethra alnifolia,Rhododendron viscosum Herbaceous Osmunda cinnamomea, Symplocarpus foetidus, Sphagnum spp.

CHARACTERISTIC SPECIES:

Fire Island National Seashore

Nyssa sylvatica, Acer rubrum, Carex crinita, Osmunda cinnamomea

Globally

Nyssa sylvatica, Acer rubrum, Vaccinium corymbosum, Clethra alnifolia, Osmunda cinnamomea

VEGETATION DESCRIPTION:

Fire Island National Seashore

Black gum swamp; *Nyssa sylvatica* is the canopy dominant with *Acer rubrum* often present. The shrub layer commonly has *Vaccinium corymbosum* with *Rhododendron viscosum*, *Clethra alnifolia* and *Nyssa sylvatica* often present. Vine cover is common, especially *Smilax rotundifolia*. The herbaceous layer is variable although not diverse. Individual species are often locally dominant, especially *Osmunda cinnamomea*, *Polygonum hydropiper*, *Lycopus virginica*, *Rumex verticillatus*, *Triadenum virginicum*, and *Carex crinita*. Hummock and hollow microtopography is common. *Sphagnum* mosses are dominant where present.

Globally

This red maple swamp is dominated by *Acer rubrum* and *Nyssa sylvatica*. The shrub layer is characterized by *Vaccinium corymbosum*, *Clethra alnifolia*, *Ilex verticillata*, *Rhododendron viscosum*, *Leucothoe racemosa*, and on the Atlantic and coastal plains, *Ilex glabra* may also be present. The herbaceous layer is not particularly diverse, characterized by *Osmunda cinnamomea*, *Symplocarpus foetidus*, *Carex intumescens*, *Osmunda regalis*, and *Onoclea sensibilis*. Hummock - hollow microtopography is evident, and *Sphagnum* mosses make up the bryophyte layer. This community is differentiated from *Acer rubrum - Nyssa sylvatica - Betula alleghaniensis / Sphagnum* spp. Forest (CEGL006014) by the absence or infrequent occurrence of *Tsuga canadensis*, *Betula alleghaniensis*, *Nemopanthus mucronatus*, *Carex trisperma*, *Clintonia borealis*, and by the presence of species with more southern affinities such as *Clethra alnifolia*, *Ilex glabra*, *Rhododendron viscosum*.

COMMENTS:

Fire Island National Seashore

Globally

States/Provinces: CT:S?, MA:S?, NJ:S?, NY:S?, PA:S?, RI:S?

OTHER NOTEWORTHY SPECIES:

CONSERVATION RANK: G?

DATABASE CODE: CEGL006156

MAP UNITS: FIIS plots 11, 27, 58, 59

REFERENCES: Breden 1989 Dowhan and Rozsa 1989 Golet et al. 1993 Metzler and Barrett 1996 Reschke 1990